
NASA NASA-TP-2529 19860019189

Technical
Paper
2529

May 1986

Solution of Elliptic Partial
Differential Equations by
Fast Poisson Solvers Using
a Local Relaxation Factor

ImOne-Step Method

Sin-Chung Chang

,']kt', ( I_F', /,'L2?I:,'\,: _ _'%_"_ "-H"





NASA
Technical
Paper
2529

1986

Solution of Elliptic Partial
Differential Equations by
Fast Poisson Solvers Using
a Local Relaxation Factor

I--One-Step Method

Sin-Chung Chang
Lewis Research Center

Cleveland, Ohio

NIA
National Aeronautics
and Space Administration

Scientific and Technical
Information Branch





Summary Many elliptic PDE's can be expressed as

An algorithm for solving a large class of two- and three- Qu = h (1)
dimensionalnonseparable ellipticpartial differential equations
(PDE's) is developed and tested. It uses a modified where Q is a nonseparable second-order linear elliptic
D'Yakanov-Gunn iterative procedure in which the relaxation operator, u the dependentvariable, and h a given source term.
factor is grid-point dependent. It is easy to implement and Equation (1) may be solved with the iterative procedure

applicable to a variety of boundary conditions. It is also P(u n+l -u n) =- r(Qun- h) (2)
computationally efficient, as indicated by the results of
numerical comparisons with other established methods, where n is the iteration number, r a nonzero relaxation factor,
Furthermore the current algorithm has the advantage of and P a separable elliptic operator, which can be directly
possessing two important properties which the traditional inverted by an FDS. This procedure is a continuous analogue
iterative methods lack; that is, (1) the convergence rate is of the D'Yakanov-Gunn iterations (ref. 6) and was utilized
relatively insensitive to grid-cell size and aspect ratio, and (2) by Concus and Golub (ref. 7) and Bank (ref. 8) in their works
the convergence rate can be easily estimated by using the on the numerical solution of nonseparable elliptic equations.
coefficient of the PDE being solved. In the previous works involving iteration (2) the relaxation

factor r is treated as a constant and the iteration is accelerated

by an optimal choice of r. In the current report, a more
Introduction efficient algorithm is obtained by using a spatially varying

relaxation factor.

Since the middle sixties, fast direct solvers (FDS's) have The use of a local (spatially varying) relaxation factor in

been developed for the numerical solution of separableelliptic the current study is motivated by an earlier study of a
partial differential equations (PDE's) (refs. 1to 5). Based on semidirect procedure (ref. 9). In the previous study, the local
Fourier analysisand cyclic reduction, FDS algorithmsare most convergence rate evaluated by using a simple von Neumann
effective on a uniform rectangular grid. They can obtain the analysis, to a great extent, is consistent with the numerical
solution with efficiency far beyond the reach of traditional results. Based on this observation, it becomes obvious that a
iterative procedures such as successive overrelaxation (SOR) local relaxation factor could be used in iteration (2) to optimize
methods, its local convergence rate. Recently, a similar idea was also

Generally, FDS algorithms are not directly applicableto an used by Botta and Veldman (ref. 10) to develop their SOR-
ellipticproblem with eithera computation domainof irregular related local relaxation method. However, as shown later,
shape or a nonseparable PDE. The limitation of the there is an underlying reason which makes the use of a local
computation domain may be circumvented either by mapping relaxation factor in the current procedure particularly
the original domainonto a rectangular domain or by using the attractive.
capacity matrix method (ref. 5). The limitation of a As shown by the work of Bank (ref. 8), iteration (2) can
nonseparable PDE can be circumvented, by a semidirect also be accelerated by choosing an operator P, which closely
procedure, that is, an iterative procedure driven by an FDS. resembles the operator Q. Application of this technique,
In this study, a new semidirect procedure is developed and however, could be limited by the following considerations:
used as an dliptic solver for both two-dimensional (2-D) and (1) This techniquemay require the use of a general separable
three-dimensional (3-D) problems. This new iterative operator P. This, however, is computationallyinefficient, since
procedure is easy to implement, computationallyefficient, and an FDS code for a general separable operator is about five
applicable to a variety of boundary conditions. Furthermore times slower than one for the Laplacian V 2 (ref. 5).
it has the advantage of possessing two important properties (2) To apply this technique, the FDS code for the operator
which the traditional iterative methods lack; that is, (1) the P, generally, must be made to individual specifications. This
convergencerate is insensitivetogrid-cell size and aspectratio, may require a considerable effort.
and (2) the convergence rate can be easily estimated with the The preceding considerations lead us to chooseP = V 2or
coefficients of the PDE being solved, its equivalent in the current study.



In the section Analysis, the convergence rate of the central Q-.(ui,j) = hi,j (6)difference form of equation (2) is studied for a constant

coefficient operator Qby assuming the iterative errors satisfy and
the periodic boundary conditions. The analysis is a rigorous

version of the von Neumann analysis and its results are used ff(u_.+.l_u n [_( ]to determine the optimal value of the relaxation factor r. In _ t,J il,j) = -- 7" unj) -- hi,j (7)
the sectionLocal Relaxation, the results obtainedin the section

Analysis are extended to solve PDE's with variable respectively. Here hi, j is the source term and the finite
coefficients. In the section Numerical Evaluation, the current difference operators _ and F, respectively, are defined by
method is numerically evaluated with a variety of 2-D

nonseparable elliptic PDE's. In addition to the advantages a(l_i,j)d- -ef"a(Ax)-2(Vi+l, j "JI-Vi_l, j -- 2vi,j)
noted previously, the results of this numerical evaluation

indicate that the current procedure can be used to solve PDE's + c(Ay) -2 (vi,j+ 1+ vi,j- 1- 2vi,j)
with a cross-derivative term and that it works very well for

many PDE's with rapidly varying coefficients. + b(2AxAy)-1 (VI+I,j+1 "l-Vi_l,j_ 1
Finally, in the section Application to a 3-D Flow Problem,

the current procedure is incorporated into an Euler Solver - vi+x,j_1_ vi_x,j+l)
(ref. 9) to obtain solutions for 3-D incompressible flows in

a 180" turning channel. It is shown that this new procedure (8)
converges with a rate much higher than that reported in
reference 9. The successive line overrelaxation (SLOR) and
calculations referred to in the section Numerical Evaluation

were carried out by using a code developed by Shih-Hung l_(vi,j) de=f'ao(AX) -2(Vi+l,j "q- 1Ji-l,j -- 2Vi,j)
Chang of Cleveland State University.

+ co(Ay) -2(1)i,j+l -[- Vij- 1 -- 2Vi,j) (9)

where vi,jis any function of the grid point (i,j). The operator
Analysis ffcan be considered as a central difference Poisson operator

for a uniform grid with grid intervals Ax/x/-do and Ay/x/-co.
As an initial step, iteration (2) is studied by assuming that Thus, it may be inverted by using a fast Poisson solver.

r is a constant and To study the convergence rate of iterative procedure (7),
one notes that equations (6) and (7) imply that

Qdef. 02 02 02
= aox---5 + 2b--oxOy+ C--oyz (3) ff(en.+l\'a - e_',j)= - rO(e_,j) (10)

where
where a, b, and c are arbitrary constants subjected to the

elliptic conditions en .def.Un '_,j= ,,j - ui,j (11)

a > 0 ) Given a set of e°j's which satisfies the periodic conditions

c > 0 _ (4) eOj eo+Kd o

, = = eid+L (i,j = 0, 4- 1,4-2 .... ) (12)

ac - b2 > 0 where K(_>2) and L(_>2) are two arbitrary integers, it is shown
in appendix A that

(1) e_,j's (n= 1,2.... ; i,j=0,4-1,4-2 .... ) are uniquely
Furthermore, it is assumed that determined by equation (10) and the following auxiliary

conditions:

p_f. 0 2 0 2

aoOx--5 + CoOy2 (% > O, Co> 0) (5) e.n.= e n = ntj i+K,j ei,j+L (n = 1,2.... ) (13)

and
where ao and co are two arbitrary positive constants. When
a uniform grid with grid intervals Ax and Ay in the x- and (K-1) (L-1)

the y-directions is used, the central difference forms of E E e'_'J= 0 (n = 1,2 .... ) (14)
equations (1) and (2) at a grid point (i,j) are i=0 j=0



(2) Let a(pk,e)< 0 if (k,t?)6 • (22)

(k'e)def 1 [ (_ _)] This inequality follows from the assumptions ao > 0 and
_oid =' _ exp 27ri + I -=x/Z-1 co > 0, and the fact that (0,0) does not belong to ,It.

As defined in equation (11), e.".is the error of nth iterativetd

solution. According to equation (21), this error is a sum of

(i,j = 0, 4- 1, 4- 2.... ; k = 0,1,2 ..... (K - 1); (K x L - 1) terms, and each term is multiplied by the factor
G(k'e)(T)as the iteration number n increases by 1. Obviously,

e= 0,1,2 ..... (L- 1)) (15) the term with the greatest value of ]G(k'e)(7")[eventually
becomes dominant if the corresponding E°'(k'O does not

I [ 1 ]2 vanish" Let the err°r n°rm Ilenlland the asympt°tic err°r
,'r(k'e)_f'-- 4 ao sin (Trk/K) multiplication factor Moo, respectively, be defined asvp _

1 2 (--) (--) n 2
+ co sin (rffL) Ilenll °ef' (e i (23)Try

(k = 0,1,2 ..... (K- 1); e= 0,1,2 ..... (L- 1)) (16) and

I I ] ,,en+l,1 2 1 2 Moodef. lim (24),(k,0_e_._ 4 a sin (Trk/K) + c sin (Tre/L) =vq = n--+oo Ilenll

[1 ][1 ]+ 2b _x sin (_rk/K) _yysin (Tre/L) Then, assuming every E°'(k'e)# O, it may be concluded that

lim le.n.+11
× cos (Trk/K) cos (re/L) n-+oo "J - G(r) (i,j = 0, 4-1,4-2 .... ) (25)

leinjl

(k = 0,1,2 ..... (K - 1); e = 0,1,2 ..... (L - 1)) (17) and

(K- 1) (L- 1) M°o= G(_-) (26)

EO'(k'e)de=f" E E e°.,,j.,.,,,(k_e)_,j(k,O _ _ (18)
i=0 j=0 where, for a given r,

and G(r)_f' MaX(k,e),_IIG(k'O(r)ll

( A direct implication of equation (26) is that the value of
-' - (k,e) fi_/ (19) Mooreaches its minimum if the parameter z. is chosen suchG(k'e)(7")ae=f"1-- _"\ cr(pk.e)j

that the function G(z) is at its minimum. Let

where Emeans an element of, and • is the set of ordered pairs

defined by 3,(k,e)_f.a(qk'e)
o/_k,l)

• _f [(k,0 Ik = 0,1,2 ..... (K - 1);

and
e = 0,1,2 .... ,(L- 1); (k,O :# (0,0)] (20)

Then the unique solution to equations (10), (13), and (14) is q/maxd=ef" Max I'y(k'e)](k,e)_,_
explicitly given by (n = 1,2.... )

"Ymind=ef" Min ['y(k'e)l

]__j [ ]n EO,(k,O._o(k,e) (k,e),'_en. = G(k'O(r) • (21)t,j _i,j

(k,e)_,_ It is shown in equation (33) that "Ymax- "Yrmn> 0. ASa result,
One notes that G(k'e)(r) is well defined for all (k,g) E_, one concludes from equation (19) that G(z) reaches its

since minimum

3



Godef. G(rO) E - 1 Thus, in the limit of K,L-- + c_, r° and G°, respectively,= - < 1 (27)
E + 1 approach

when r* def. 2
_kmax q- )kmin (35)

r = r° def. 2
(28) and")/max q- "Ymin

Here r° is the optimal relaxation factor, and G,d__ef.E* - 1 < 1 (36)E'+I

E def. "I/max (29)
"Ymin where

Combining equations (26) and (27), one concludes that (1) E,a___ef.)_max
M_°< 1 if r = r°, and (2) M°oincreases with an increase of _kmin (37)
E.

The values of "/maxand 3'r_n,generally, are functions of the Two comments on equations (33) to (35) are as follows:
integers K and L. However, as will be shown, "Ymaxand "Ymin (1) The uniform bounds _max and hmin,generally do not
approach two separate limitsas the values of K and L increase, exist if the operator/_is replaced by an operator of other type.
Let (2) Since _kmax + )kmin = 1_ q- d,

1 2
)kmaxd--ef'_ (1] + C "k- N/(_ -- d)2 .1_ 4(b)2) (30) r* - (38)a+d

and Usingequations (30) to (32), (36), and (37), it can be shown
that the parameter G* is a function of a, b, c, and Co/ao.If

def.1 ( 4 (a 4(b) 2) the coefficients a, b, and c are known, G* becomes a functionmm'= 2 -&+ d -- _ _)2 + , (31) of the single variable co/ao. As shown in appendix C, this
function reaches its minimum

where

G_nd=ef. [b__[ (39)_/ac
_ d__ef,a > 0

ao
when

def. C= -- > 0 (32)
Co CO C

-- = - (40)

b _f b ao a
_aoC o

Furthermore, assuming Co/ao= c/a, it is shown in appendix
C that

In appendix B, it is shown that

-- T° *)kmax > "/max _ "/min _ )kmin > 0 (33) = r (41)

and for any finite integers K _>2 and L ___2.
At this juncture, it is noted that equations (35) and (36) can

lim 7max= )kmax 3 also be derived (ref. 11), in a less rigorous fashion, by using

K,L--+oo l (34) a simple von Neumannanalysis and theorem 1 in appendix B.lira 'Ymin= )kmin The current analysis shows that the von Neumann analysis
K,L_+oo for equation (2.8) is justified only under many restricted

4



conditions. One of them, the uniqueness condition (14), respectively, are replaced by aij, bij, and cij. That is, the
generally is not required for other iterative procedures, discretized values of a, b, and c at the grid point (i,j). On the

This section concludes with a discussion on the possible other hand, the coefficients ao and Coassociated with the

generalization of the 2-D results to a space of higher operator P (eq. (9))are again assumedto be positive constants.
dimension. In an N-dimensional space (N _>2), equation (3) The preceding definitionsof P and Q are directly applicable
may be replaced by to any internal grid point. On a periodic boundary, they are

also applicable if the periodic conditions are invoked.

N 42 Similarly, by using an extrapolation technique (ref. 12), the

Q = _ ot_ Ox_Ox_ (42) operators P and Q can be defined on a Neumann boundary._,v=1 The relaxation factor r, in the VC version, is replaced by
its grid-point dependent version r U.Ideally, the values of rij's

where u_ are real constants and x_ the independentvariables, may be chosen such that the parameter M _ (eq. (24)) is
Furthermore, the elliptic condition (4) is replaced by the minimized. Unfortunately,this approachis impracticalbecause

requirement that the matrix of the complexity arising from the variable nature of the
coefficients of Q and the necessity to consider the boundary

Ad_-ef"(ot_) (43) conditions.The alternativeadopted in the current study is based
on the following heuristic arguments: Recall that the analysis
described in the previous section is a rigorous von Neumannis symmetric and positive definite (SPD). Also the operator

P assumes the new form analysisfor equation (10). The resultsof this analysis are fully
justified only under very restricted conditions. However, it

N 02 is wellknown that the von Neumannanalysisoften gives usefulresults even when its application cannot be fully justified.
pde=f. _ pt, oxl,Ox_' (p_ > 0, _ = 1,2,3 .... ,N) (44)= 1 Particularly, by freezing the variable coefficientsat their values

at the grid point under consideration, this analysis has been

With the aid of equations (42) to (44) and theorem 1 in routinely used in the stability study of the numerical procedure
solving PDE's with variable coefficients.Because of the aboveappendix B, equations (6) to (37) may be generalized in a

straightforward manner. However, it should be cautionedthat, considerations, the VC version of equation (38) is assumed
for N > 2, the parameters _kmax and _kmin are defined, to be
respectively, as the greatest and the smallest eigenvalues of
the SPD matrix 2

Ti,j -- (47)
_lij "_ cij

.40--ef'(&_) (45)

where where

Ol_t'de=f" Ollzt' _lijde=f"aij > 0 and cij def" cij > 0
_4p_p, (46) ao Co

In view of equations (25) and (36), it is also assumed that
Finally, it is noted that equations (38) to (41) have no trivial
counterparts in a space with N > 2.

_+1
lim i,j _ aij (48)

n - +¢_ [e in,j l

Local Relaxation where Gij is the local error multiplication factor defined by

In this section, the numerical procedure developed in the

previous section is extended to solve PDE's with variable Gode=f.r.'ij- 1coefficients. To proceed, the operator Q is initially assumed _-- (49)
to have the form defined in equation (3), with the F,ij+ 1
understanding that the coefficients a, b, and c are functions

of x and y subjected to the elliptic condition (4). The parameter Z_jis the grid-point dependent version of r. °.
In the variable coefficient_(VC) version of the iterative It will be evaluated by using equations (37) and (30) to (32)

procedure (7), the operator Q will be defined by using equation with the understanding that the coefficients a, b, and c,

(8), with the understanding that the coefficients a, b, and c, respectively, are replaced by aij, bij, and cq. Let
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I 1'22 1(e,  max f
 min fMin

(i,j)_,_Lau.)

G oodef"Max IGo.I (51)
(i,j)E_ may be evaluated either analytically or numerically.

The current procedure can be modified to solve a class of
where cbdenotes the set of (i,j)'s where uifs are to be solved, self-adjoint PDE's. That is,
Then, with the aid of equation (24), assumption (48) implies

Moo= GO° (52) Q = Q+(x,y)ae=f'--_x (x,y) +Or q(x,y) (56)

Several comments can be made relating to equation (52).
(1) Since GO° can be evaluated by using the known where p and q are arbitrary positive functions of x and y. A

coefficients ao, Co,aij, bij, and cij, the value of M °°,and thus central difference operator Q+ corresponding to the
the convergence rate of the current iterative procedure, can differential operator Q+ is defined by (ref. 13)
be predicted by using equation (52). I-

(2) As long as the coefficients aij, bij , and Cij do not vary ___+(Vi,j)de=f" (Ax) -2 [p(i_l/2)jVi_l,j + p(i+l/2)jVi+l,jgreatly from one grid point to its neighbors, the value of Goo -1
is not sensitive to the grid-cell size and aspect ratio. This - (P(i-1/2)j+ p(i+_/2)i)vij[
observation coupled with equation (52) implies that the I- _ J

A -2convergence behavior of the current numerical procedure, + (y) qi(j_l/2)Vi,j_l + qi(j+l/2)Vi,j+l
generally, may not be sensitiveto the grid-cell size and aspect -1

ratio. - (qiu-m/2+ q  +l/2 )vgj[ (57)
(3) The VC version of equation (7) can be expressed in a J

form in which the coefficients ao and co appear only in the where
ratio Co/ao.As a result, the convergence behavior of the

def. -
current iterative procedure is dependent on the ratio Co/ao,but v (i*1/2)j= P txi -4-Ax/2,yj)
not on the individual values of ao and co. Similarly, one can
also show that the parameter Goois dependent on the ratio and
Co/ao,but not on the individual values of aoand Co.Equation

def.
(52) suggests that, in order to maximize the convergence rate, qi(j_-7/2)= q (xi,Yj .4-Ay/2)
the ratio Co/ao should be chosen such that Goo is at its

minimum. With the assumption that coefficients p and q do not vary
Evaluation of the optimal value of Co/ao,generally, may greatly from one grid point to its neighbors, then

involve complicatednumerical calculations. However, in case

that bij = 0 for all (i,j) E_b,it is shown in appendix D that Goo a__+(vi,j) - pij(Ax) -2(Vi--1,j"b"Vi+l,j -- 2Vi,j)
reaches its minimum

+ qij(Ay)-2(Vi,j_l + l:i,j+l -- 2Vi,j)

Goo def._- 1 (53) Thus Q_.+(vi,j)- Q(vi,j) (eq. (8)), if aij = pij, cij = qij, and
rain= N/_max/_mi n _ 1 bij = 0 for all (i,j) E _. This observation coupled with

equation (47) lead to the assumption
if and only if

2
rU- (58)

C"_°= N/_max " _min (54) Pij + (lij
ao

where Pijde=f Pij/aoand _lij_f"qij/Co.Similarly, in the case that
where Q = Q+(x,y), the parameter Goo will be evaluated by



assuming aij = PO,co = q0, and bij = 0. Also the right sides O_(n)de=f" lim Ot(n) (64)
of equations (53) and (54) will be evaluated with ,Xx,Ay-O

Numerical evaluation involving PDE's with constant

I ") "h coefficientsare given in reference 15. The first group of PDE's/_maxd=ef"Max qij to be studied includes

(i,j)E'_t,Pij) (59)

/_mind--ef"Min x.t-ij._,I_l 202u x 2 202u
(i,j)_q, (1 + 2x2 + 2y )_x2 + (1 + + y )_x 2 = 1 (65)

The technique of local relaxation described for 2-D

problems, can be applied in a similar fashion, to 3-D problems. 2x2 2 02u 02u
The value of this technique as a tool to solve PDE's with (1 + + 2y )_x2 + (1 + x 2 + y2) OxOy
variable coefficients will be demonstrated in the subsequent

sections. 2 02u
+ (1 +x 2 + y )a-_,2 = 1 (66)

Numerical Evaluation

Numerical evaluation of the current method begins with the 2 02u . 2, 02u + x2 02u
following preliminaries: (1 + 2x2+ 2y )_x2 + (1 + x 2+ y )0--_y (1 + + y2)__(1) In this section the domain for all numerical problems OY2

isassumedtobel>x_>0andl_>y>0. Moreover, the ]Ou [ ]Ouoperator /Tis inverted by using a Fast Poisson Solver (ref. 14). + [1 +3e (x2+y2) + 1+3e (xz+y2)
(2) The convergence rate is evaluated by using ' Ox Oy

- [1 + 3e(2+Y2)]u = 1 (67)• /,e",\
Oe(n) d__ef._ ,og,o_ll-_) (60)

[I 1:]°[I 1°u]or OOx l+(x2+y2) +Oyy 2+(x2+y2) Oyy

/llr"ll'_
Or(n)de=f"-- 1Ogl0[.-7-m:,..} (61) = 1 g= 2,4,6,8 (68)

\llrVllJ

where en is the error norm defined in equation (50), while Fifteen numerical problems associated with the above PDE's
UrnUis the residual norm defined by are defned in table I. The parameters MX and MY,

respectively, are the numbers of grid intervals in the x and

I [ ( ) ]211/2 ydirections. The otherparameter lB specifies the particular
n -- hi, j (62) set of boundary conditions (fig. 1). All these problems areIlrnlld--ef" E Q ui'j

(i,j)Eq solved by assuming ao = Co= 1.
Problems 1to 5 are associatedwith the same PDE (65). They

The solution ui,j obtained to machine accuracy is used to differ on the grid-cell size, aspect ratio, and boundary
evaluate Oe(n). Furthermore, since u°i = 0 for all (i,j) E'_ conditions. As shown in table I, the values of either O1(20)
in the current numerical study, Oe(n) can be interpreted as or Ot(20) are fairly accurate estimates of Or(20). Also, as
the number of correct digits in un. expected from the current theoretical development and thet,J"

(3) In view of equation (52), the parameters Oe(n) and experiences of other researchers (refs. 7 and 8), the effects
Or(n) will be predicted by using of grid-cell size and aspect ratio on the convergence rate are

minimal.Even the very large aspect ratio (16:1) does not cause
0t (n) = - n • logl0(G_) (63) any significantreductionin the convergencerate. Furthermore,

the convergence rate is insensitive to the particular set of
or its continuous version; that is, boundary conditions used.



TABLEI.--NUMERICALPROBLEMS ASSOCIATED WITH Equation (67) contains first-order and zero-order derivative
EQUATIONS (65) TO (68) AND COMPARISONS OF Or(n ) ,

Ot(n), AND Ot(n) terms. This type of PDE is solved by simply adding the central
_U ndifference form of those terms to the term Q(ij) in

[n = 20 for problems 1 to 5, n = 32 for problems 6 to 15.] equation (7). The value of Or(32) for problem 11 indicates

that the current procedure works very well even though the
Problem Equation e 1B MX MY Or(n) Or(n) Or(n) coefficients of first-order and zero-order derivative terms in
number equation (67) are of the same order of magnitude as the

second-order terms. This is rather unexpected because the1 (65) NA 1 16 16 14.50 12.34 12.04
2 NA 1 64 64 13.78 12.11 12.04 coefficients of lower order terms are completely neglected in
3 NA 1 64 4 13.96 12.68 12.04 the evaluation of the local relaxation factor.
4 NA 2 16 16 13.96 12.34 12.04 Equation (68) belongs to the class of self-adjoint PDE's
5 _ NA 3 16 16 13.62 12.18 12.04 defined in equation (56). The variation of the values of the
6 (66) NA 1 16 16 14.43 9.69 9.63 coefficientsp and q increases progressively as one goes from7 NA 1 64 64 12.58 9.64 9.63

e = 2 to e = 4 and so on. For e = 8, the increase in the values8 NA 1 64 4 19.04 10.01 9.63
9 NA 2 16 16 14.50 9.66 9.63 of p and q from one corner (x = y = 0) to another corner

lO NA 3 16 16 15.44 9.66 9.63 (X = y = 1) on the unit square is of the order of 100 times.
11 (67) NA 1 16 16 13.05 9.69 9.63 It might appear that the technique of local relaxation is no
12 (68) 2 1 16 16 17.24 15.27 15.27 longer valid. The results shown in table I indicate the current13 4 1 16 16 16.83 15.27 15.27
14 ] 6 1 16 16 13.44 15.27 15.27 method is still useful in this extreme case.
15 _ 8 1 16 16 7.55 15.27 15.27 The numerical study of problems 1 to 15 concludes with

a discussionon their convergencehistories. Sinceequation (63)

y represents a linear relation between Ot(n ) and n, it is not

L surprising that the relations between Or(n) and n curves areclosely approximated by straight lines for the above problems
(Periodiciny-directi0n) x with the exception of perhaps problems 13 to 15. As shown

uo0 u(×,l)ou(x,0) _u/_y-0 in figure 2, the linear relation between Or(n ) and n

_ _ gradually deteriorates as the variation of the coefficientsp and

u_ H ]._" _ q increases. The robustness of the current algorithm is most

u_0 evident in its ability to reverse the trend toward divergence
during the first few iterations.

The second group of PDE's to be studied includes

(a)IB:1. (b)IB=2. (c)IB=3. OXX 1 + (x + y)2

0 I[l+sin2(x+Y)]20_y 1Figure 1.--Three sets of boundary conditions on a unit square. + Oy = hi (x,y) (69)

6toX0areasso iate wit  quation,66,xll 10udiffers from equation (65) only in the appearance of a cross- 0 1 + 1 2

derivative term. The numerical results indicate that the 2(x4+ y4)_] OX)
convergence rate may be substantially underestimated by the
parameter Ot(32) or O7(32).Furthermore, it is more sensitive

the change of grid-cell size and aspect ratio. An explanation +OI[l+l 4120U__y1
these peculiar behaviors associated with a PDE with a Oy 2 (x4 -k-y ) = h2 (x,y) (70)

cross-derivative term is given at the end of appendix B.
The success of the current numerical method in solving a where h1(x,y) and ha(x,y) are source terms chosen such that

with a cross derivative term is rather significant. This
author is unaware of any earlier work which solves PDE's u = Ul (x,y)_f" sin x sin y (71)

this type with a semidirect procedure. The lack of progress
this area may be due to the fact that it is very difficult to and

choose a separable operator P which closely resembles a
nonseparable operator Q containing a cross-derivative term. u = U2(X,y)de= f" [X( 1 - x)y(1 - y)]2 (72)

definition, a separable operator P can not have a cross-
derivative term.) respectively, are the exactsolutions of equations (69) and (70).



0 Problem The last PDE's to be studied in this section are
number

15 02u+0I[ 1 ]0u_ =0 (73)Ox----i _y 1 + _ (x - Y)J Oy)

o 10 Ox2 -_y 10+ (x-y) =0 (74)
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An exact solution for both equations (73) and (74) is

1 2 (75)
20 I u = y +-x4

0 16 32
n

Equations (73) and (74) were numerically solved by using a
Figure2.--Convergencehistoriesof problem numbers 12 to 15. grid with MX = MY = 31. It is assumed that the values of u

at all boundarygrid points are specifiedby using equation(75).
To compare the efficiency of the current method with

Definitions of the four numerical problems associated with
traditional iterative methods, these numerical problems are

equations (69) and (70) along with the values of Oe(10), solved by using the current method along with SLOR
Or(10), and Ot(10 ) are given in table 1I. The boundary values (successive line overrelaxation). The results of central
of u in these problems are specified by using equation (71) processing unit (CPU) time comparisons are summarized in
or equation (72). table 111.Those parameters used in this table which were not

Problem 16 is one of the test problems used by Bank
(ref. 8). Compared with the current value of Oe(10) = 5.96, defined previously are as follows:
the values obtained by Bank are 3.49 without using any scaling
technique, and 3.87, 4.81, and 6.76 using three different Nc smallest value of n which satisfies the convergencecriterion
scaling functions. Since the operator/Tused in Bank's method

is a general separable operator, the corresponding FDS code (Ax)2• Ilrnll< 10-8 (76)
usually must be made to individual specificationsand is about
five times slower than that for the Laplacian V 2. Thus, the where IlrnUis defined in equation (62) and Ax = 1/31
current algorithm is easier to use and, for problem 16, more
efficient by at least a factor of 4.

Problem 18is another test problemused by Bank. Compared Tf CPU time used in the execution of the FDS code
with the current value of Oe(10)= 8.59, the value obtained Tt total CPU time (IBM 370/3033AP) used to satisfy the
by Bank is 5.88 without using his scaling technique and 14.79 convergence criterion (76)
if a scaling function is used. This problem along with problem _0o optimal value of the relaxation factor used in the SLOR
19was also solved by Concus and Golub (ref. 7). The method method(determined by repeatednumerical experiments)
of Concus and Golub is also driven by a fast Poisson solver
and the results obtained are comparable with ours. However, According to table 111,the total CPU time required for the
their method is applicable only when p = q as in the case of solution of either equation (73) or equation (74) with SLOR
equation (70). is about twice that with the current method. This comparison

becomes even more favorable toward the current method if

TABLE II.--NUMERICAL PROBLEMS ASSOCIATED WITH
EQUATIONS (69) and (70), AND COMPARISONS OF TABLE III.--CPU TIME COMPARISONS BETWEEN

Oe(10), Or(10), and Or(10) CURRENT METHOD AND SLOR METHOD

Problem Equation MX MY Co/ao Oe(10) Or(10) Or(10) Equation Solution Co/ao too Nc Tt, Tf,
number method sec see

16 (69) 16 16 a0.423 5.96 5.33 3.92 (73) Current a0.8839 NA 13 1.871 1.345
17 (69) 64 64 a0.379 5.27 4.22 3.47 (73) SLOR NA 1.752 83 3.790 NA
18 (70) 16 16 a1.0 8.59 8.09 _ (74) Current a9.989 NA 6 0.888 0.614
19 (70) 64 64 a1.0 8.47 7.95 _ (74) SLOR NA 1.510 44 2.039 NA

aEvaluated from equation (54). aEvaluate from equation (54).
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one recalls that the prediction of coo is elusive. A small error 2 --

in this prediction may result in a large increase in the value FI0w

of Tt. For example, in the solution of equation (73) with x2o0.65-, direction7

SLOR, a change of the value of the relaxationfactor from 1.752 x1o0q_ , "-" d
to 1.680 results in an increase in the value of Tt from 3.790 _""- "- xto 6.565 seconds. On the other hand, as shown in table IV, _2 1 - _ 0.75 x1o-zj

the optimal value of Co/aoevaluated by using equation (54) _ ,I
usually is very accurate. Moreover, since the fast Poisson /
solver (ref. 14) currently used is a general purpose code, the xl °2J"

value of Tf can be reduced further if the fast Poisson solver I I I
is optimized. -.5 0 1.0 1.559

To conclude this section, the current local relaxation _1
procedure is compared numerically with a procedure which
differs from the former only in the use of a constant relaxation Figure3.--A converging and divergingturningchannel (x3 is suppressed).
factor rc. With the assumption of ao = Co= 1, problem 16

inner loop, the velocity field V"is updated to satisfy thewas solved with different values of r c. As shown in table V,
Oe(10) reaches its best value (- 2.278) at rc - 0.103. Even continuity equation
this best value is substantially below that (- 3.47) obtained

V. V = 0 (77)by using the local relaxation method (ao = co = 1).
Furthermore, the accurate prediction of optimal rc is by no

and the velocity-vorticityrelationmeans easy (e.g., pp. 964 to 966 of ref. 8). Thus the current
procedure has a clear edge over a procedure that uses a -- --
constant relaxation factor, x7 × V = _ (78)

where _" is a known divergence-free (i.e., V. _= 0)

Application to a Three-Dimensional vorticity field. In the current study, a solution procedure
different from that described in reference 9 is used to solve

Flow Problem equations (77) and (78). The general solutionof equations (77)
and (78) can be expressed as

In this section, the current semidirect procedure is

incorporated into an Euler solver (ref. 9) to obtain the inviscid V -- V_+ Vu (79)
solution for 3-D steady incompressible rotational flow in a

180° turning channel (fig. 3). where _ is any special solution of equation (78) and u is a
The Euler solver is formed by the inner and the outer loops, solution of

The inner loop solves the elliptic equations, while the outer

loop solves the hyperbolic equations. In each pass through the V 2u = - _7• V_ (80)

As a result, once a special solution _ is obtained (ref. 9), the
TABLEIV.--NcAND TABLEV.-- solutionof equation (80) becomes the focal point of the inner-
Or(13) AS FUNCTIONS

OF Co/ao IN THE Oe(10) AS A loop calculations.
NUMERICAL FUNCTIONOF Let the coordinates ('XI,X2,X3) refer to physical space and
SOLUTION OF r c FOR (Xl,X2,X3)to computational space. It is shown in reference 9
EQUATION(73) PROBLEM 16 that the turning channel in figure 3 is a mapping of a

Co/ao Nc Or(13) Tc Oe(10) parallelepiped (2 _>Xl -> -2, 0.75 >_x2 ->0.65, 0.1 >_x3 >-0)in computational space. In physical space, equation (80) is a
0.02 0.6 Poisson's equation. However, it cannot be solved by using0.8 14 8.3343

a.8839 13 9.4040 .06 1.514 the current procedure, since the physical domain is not a
10 2.259 parallelepiped. On the other hand, in computational space, the.895 13 9.4891 .102 2.276

.897 13 9.4955 .103 2.278 domain is a parallelepiped and equation (80) becomes

.899 13 9.4987
•104 2.272

b.900 13 9.4990

.105 2.255 02u 02u 02u ( OVs 1 OVs 2.901 13 9.4985 .11 1.989 __ __ __ = _ , _,

.903 13 9.4949 .12 1.2 OX2 + OX 2 . 97 OX 2 _-'-_X 1 . OX 2

.905 13 9.4882 .13 (a)

1.0 14 8.4831 OVs 3 x
aEvaluated from equation (54). aDo not ...... ge if . _ ' (81)

Tc -->0.13. OX 3bActual optimal value.
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where V_,I,V_,2,and V_,3are the covariant components of the evaluated from equation (83). The convergence rates achieved
known vector field Vsand by using the current procedure are dramatic improvements

over those obtained in reference 9.

defcosh (Trxt)+ cos (71"x2)
= _(x,y) =' (82)

cosh - cos(x2) Concluding Remarks

The 3-D operator Q associatedwith equation (81) is a special An efficient semidirect procedure for solving a large class
case of that defined in equation (42). Let the parameter G_ of nonseparable elliptic problems has been developed. In
and the set cI,for 3-D problems be defined similar to their applying this method, a user simply evaluates the terms on
counterparts for 2-D problems. Using a line of arguments the right side of equation (7) and uses them as the input for
similar to that presented in appendix D shows that the a fast Poisson solver. The user is not required to deal with
parameter G_ reaches its minimum a large sparse matrix as in the case of a traditional iterative

procedure.
The local relaxation factor is evaluatedby using an algebraic

Gmmdef' _ -- 1 (83) formula. This formula along witha convergencerate prediction
• = N/r/max/r/mi n _- 1 methodis developedby using a heuristic argument. It is shown

numerically that the prediction method is an effective tool for

if and only if the coefficients of the operator P (eq. (44)) are estimating the convergence rate.
chosen such that The convergence rate can be accelerated by_optimizing the

coefficients of the finite-differenceoperator P. It is shown that
this optimization can be carried out easily for a large class

P3 _ P3 = N/r/max • r/rain (84) of elliptic PDE's.
Pl P2 It is also shown that the convergence rate of the current

procedure is relatively insensitive to the grid-cell size and

Here r/maxand r/rain,respectively, are the maximum and aspect ratio. The underlying reason for this insensitivity is the
minimum of the function r/in cI,. existence of the uniform bounds _kmax and Xmln.Their

In a successful effort to obtain a secondary flow solution existence also contributes greatly to the simplicity of the
in the turning channel, equation (81) was solved once during current procedure.
each of 25 passes through the inner loop (The source terms Although not shown in this report, the current procedure
on the right side of equation (81) vary from one pass to may also be used to solve a second order quasi-linear elliptic
another.) The central difference form of equation (81) is PDE. Since the coefficients of this PDE are functions of the
obtained by using a grid with 144 uniform intervals in the dependent variable and its derivatives, the local relaxation
Xl-direction and 12 uniform intervals in both the x2- and factor must be updated during each iteration for this type of
x3-directions. It is assumed that the normal derivative of u application.
vanishes at all boundaries except at the exit plane (xl = 2)
where u = 0. Thus r/max= r/(-2,0.65) - 0.9966 and
r/min= r/(0,0.75) -- 0. 1716. AS suggested by equation (84),
equation (81) was solved by assuming P1 = P2 = 1 and National Aeronautics and Space Administration
P = 0.4135. The values of Or(8) obtained range from 3.69 Lewis Research Center
to 4.48. All are higher than the value of Or(8) - 3.07 as Cleveland, Ohio, January 13, 1986
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Appendix A
Derivation of Equation (21)

In this appendix, we will derive equation (21) by using Each vector encan be expressed as a linear combination of
equations (10) to (20). To proceed, we define the sets _(k'e)'s. This fact coupled with equations (12), (13), (A2),
(n = 0,1,2 .... ) and (A5) implies that

ende=f' [e_jli=0,1,2 ..... (K- 1); j=0,1,2 ..... (L- 1)1 (A1) (K-I) (L-l)
en..i,s= 2 2 E n,(k,e),,_!k,e)_,,j

As a result of equations (12) and (13), for a given n >_0, any k=0 l=0
e n .,,j (i,j = 0, -t- 1, -i-2 .... ) is equal to an element ofe n. Each
en contains K x L elements and, therefore, can be considered (n = 0,1,2 .... ; i,j = O, ± 1, ± 2.... ) (A8)
as a vector in a (K × L)-dimensional vector space C<K×L).
Similarly, since where

(k,1) ,_(k,e) .(k,l)
_i,j : _i+K,j = Wi,j+L (i,j = 0, -I- 1, -I-2 .... ) (A2) (K-O (L-l)

En'(k'Ode=f" E E _t,jan"'_(k'f)Yi,j (A9)
any ,,,(k,e)_ij (i,j = 0, ± 1, ± 2.... ) is equal to an element of the i=0 j=0
set

Substituting equation (A8) into (10) and using equations (A5)
_p(k,e)def.f n(k,e)[i = 0,1,2 ..... (K - 1); to (A7), one obtains= _wi,j

j=0,1,2 ..... (L- 1)] (A3) (E n+l'`k'O - En'(k'l))_y(pk'O = -- TEn'(k'O(r(qk'O

Each ¢(k,e)can also be considered as a vector in C (K×L).It
can be shown that the set of (K × L) vectors (n = 0,1,2,...; k = 0,1,2,...,(K - 1);

I_(k,e)lk= 0,1,2.... ,(g- 1); g= 0,1,2 ..... (L- 1)1 (A4) g= 0,1,2,...,(L- 1)) (A10)

forms an orthonormal basis for C(K×/");that is, For k = /= 0, equation (A10) is an identity since
a,(0,0)= %(0,0)=0. On the other hand, since _(pk,e)<0 if

(K-l) (L-D (k,f) E_/, equation (A10) implies that
(k,e) (k',e')

E E _Oi'j _Oi'j =_kk'_ff' E n+l'(k'f) [a(k'f)(T)].E n'(k'_) (k,e)_ (A11)i=O j=0 =

(k,k' = 0,1,2 ..... (K - 1); l,g' = 0,1,2 ..... (L - 1)) (A5) where G(k'e)(r)and _, respectively, aredefined in equations
(19) and(20). Equation(21) is an immediateresultof equations
(A8) and (A11) and the assumption

where _, is the Kronecker delta symbol. Also, it can be
shown that En'(°'°>= 0 (n = 1,2,3 .... ) (A12)

_,_(k,e)_ = (A6) It should be noted that equation (A12) is introduced to ensure'r'i,j ] 0 (k,l)_p(k,l)p i,j

the uniqueness of the solution. Using equation (A9) and the
(0,0) 1/_ for i,j = 0, 4- 1, 4- 2.... it can beand fact that _i,j = ,

shown that equation (A12) is equivalent to equation (14).
O(,,(k,e)h= a (k,e)_(k,e) (A7)\ri,j ] q Wi,j

where P, Q_ a(pk'e), and aq(k'e)are defined in the section
Analysis.
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Appendix B
Proof of Expressions (33) and (34)

Expressions (33) and (34) will be established by using the sl >--0 ")

following theorems: _ (B6)S2 _> 0

Theorem 1 and

Let hi and )kN, respectively, be the greatest and the smallest (tl)2 < 1 )eigenvalues of an N × N real symmetric matrix D _f" (d_). (B7)3Let real vectors s = (Sl,S2..... SN)and t = (tl,tz ..... tN)satisfy (t2) 2 < 1

N Then the following may be stated:
]_ (s.) 2 = 1 (B1)

#=1 (1) Xmax _ F > Xmin > 0 (B8)

and where Xr_xand )kmin, respectively, are defined in equations
(30) and (31).

(t_)2 _< 1 (# = 1,2 ..... N) (B2) (2) If b = 0 and 4 = _, then f = Xmax= )kmin

Then the following may be stated: (3) If b = 0 and 0 > 4 (4 > O, then
(a) F = )_maxif and only if sl = 0 (s2= 0)

N (b) F = kminif and only if s2 = 0 (S 1 = 0)

(1) X1-> (D;s,t)_ f" E d_(s_)2 (4) If b # o, then
_= 1 (a)F = _kmax if and only if either

N N S 1 = S?

+ E E dg_s_s_tgt,> _N (B3)
#=1 v=l S2 = S2+

v#/*

tl=l
(2) If, in addition, )_l#d._for/z = 1,2..... N, then

(D;s,t) = X1if and only if svlx[1--(t_)2= 0, for/z = 1,2.....
N, and (SltI,s2t2 ..... SNtN) is an eigenvector of the matrix D b
with eigenvalue X1. This statement remains true if )k1 is t2- ib [
replaced by XN.

(3) If fi (1 < 6 < N) is an integer such that d_ = hi, then or
d_ = 0 for all v # fi(1 < v < N). As a result, (D;s,t) is
independent of the component t,. This statement remains true Sl = Sl+
if X1is replaced by XN.

This theorem is a special case of theorem 1 in reference 16. s2 = s2+

t 1 = -1

Theorem 2
b

Let 4, b, and _ be the constants defined in expression (32). t2 -
Let Ibl

F(Sl,S2,tl,t2)_ f"3(Sl) 2 + d(s2) 2 + 2bslS2tlt2 (B4) where

where Sl, s2, tl, and t2 are real variables and satisfy Ibl
sl+d=ef' > 0 (B9)

(S1) 2 Jr- ($2) 2 = 1 (n5) Nf()kmax-- 3)2 + (b)2
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and To prove expressions (33) and (34), one notes that

s+d=ef. _kmax-- _ ^ (k,/)def.ffq(k,l)
_/(Xrnax-- a) 2 + (b) 2 > 0 (B10) /, = _ _---_(Sx) 2 + _(Sy) 2

(b) F --=_kmin if and only if either + 2bsxsytxty (k,e) E• (B13)

(k,l)
sl = s[- where _,q , ap<k'e),a, 6, _, and _I,are defined in the section

Analysis, and
S2 = S2

tl = 1 _/ao sin (Trk/K)
Ax

Sx_f.

tz = 161 l_Ax sin + sinLay
or

(k,/) E¢ (B14)

5'1 = 5"1

sz = sf _- sin (Tff/L)

tl = - 1 Sy___ef. Ay

(7)]6 L Ax sin + sinLaytz= Ibl

(k,0E€ (B15)
where

161 txde=f" COS(Trk/K) (k = 0,1,2 ..... (K- 1)) (B16)
S 1"-d=ef' > 0 (Bll)

Nf(_kmin __ _)2 "4- (6)2 and

and ty_ f" cos (re/L) (g= 0,1,2 ..... (L - 1)) (B17)

s2d=ef' a- _kmin Using equations (B14) to (B17), one concludes that (1)>0 (B12) (Sx)2+(sy) 2=1, (2) sx>_O, Sy>_O, and (3) (tx)2< 1,
_/Gkmin _ _)2 + (6)2 (ty)2 < 1. AS a result, part (1) of theorem 2 implies that

_kmax __>,y(k,g) > _kmin > 0 (k,g) _ ql (B18)
Proof

Since (1) Xmaxand _kmin are eigenvalues of the matrix Inequality (33) follows immediately from inequality (B18).
Using parts(1) to (3) of theorem 2 andthe facts that (1)

(b _) sx=Oifk=Oande=l,2 .... (L-1) and(2)sy=Oife=O
_def. and k = 1,2.... (K - 1), it can be shown that

_kmax= q/max (b = 0) ")

and (2))'max > Xmi.>0, theorem 2 follows directly from _ (B19)theorem 1. QED _kmin = "Ymin (b = O)
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Thus, for b = 0, equation (34) is true and it represents a 6x > [Sx- s_l "_
condition weaker than equation (B19).

To prove equation (34) for b # 0, note that ex> ]tx - 11 (B21)

3'ldef' (S_-, $2+, 1, i-_*1) _Y) -- I-_

3'2d---ef"( SI+' $2+' -1' -- _-]) beT° proceed, note that, without any loss of generality, itmaYassumedthat

3"3def" (SI, $2, 1, -- i_*l) S_- _ _x 1--S? _ _)x (822)

3"4d=ef'(S 1, $2,- 1, _-_) With the aid of the assumption b > 0 and expressions (B14),
(B16), (B17), and (B22), equation (B21) can be rewritten as

belong to sin (re/L)
_/+> >r/-

sin (rk/K)
D(F)d___ef' [(sl,s2,tl,t2)l(sl) 2 + (s2)2 = 1,

/_1.\

sl ---0, s2 ---0, (q)2 _<1, (tz)2 __-1] _x > 2 sin2Q_)
(B23)

H°wever' since (tl)2 + (t2)2= 2 f°r 3"1'3'2' 3'3' and 3/4while (_Le)(tx)2 + (ty)2 < 2 for all (k,g) E_, it follows that 3'1, 3'2, 3'3, Cy> 2 sin2
and 3'4do not belong to the set

r _f" [(Sx,Sy,tx,ty)](k,e) E _111 where

Thus inequality (B18)and part (4)of theorem 2 imply that +_f.Ay,U[x/l_(s___3x)2-]>rl -
)kmax > 3'max_-_3'min> )kmin (b € 0) (B20) n 2_x V Co [ Is+- 6x "

"-I

Furthermore, since (1)the function F is a continuous _/-def.Ay @---/x/1- (S_+ _x)2/
function over its domain D(F), (2) I' is a subset of D(F), and = _ _oo [_ s_-_ _ J > 0
(3) for any neighborhood of any one of 3'l,3'2,3'3,and 3'4,one
can find a pair of integers Ko and Lo (see below) such that It is easy to show that there exist two integers ko > 1 and
the intersection of this neighborhood and I" is not null if 2o> 1 such that
K > Koand L >_Lo. (Recall that both ,I, and r are dependent
on the integers K and L.) Thus, one concludes that equation

(34) is valid for b _ 0. _/+ 2o+ 1 2o- 1-- > -- > _/- (B24)
As an example, the existence of the integers Ko and Lo > ko - 1 ko + 1

referred to in (3) will be established as follows for the point
3'1with the assumption b1 > 0.

Since

Proof sin [(t?o+ 1)z] 2o+ 1
Since (Sx)2 + (Sy) 2 = (SI+)2 "[- ($2+) 2 _-- 1, it need only be lim

proven that, given any _x> 0, _y > 0, and 6x > 0, there exist z-0 sin [(ko - 1)z] ko - 1
Koand Lo such that for any K >_Ko and L >_Lo, two integers

sin [(17o - 1)z] _ t?o- 1k (K > k > 0) and e (L > e > 0) can be found to satisfy the lim
following conditions: z-0 sin [(ko+ 1)z] ko + 1
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One can find _ininteger M >> Max Iko,eolsuch that If

sin [Tr(eo+ 1)/M] sin [_r(eo- 1)/M] kde=f"ko(°tko +/3) )

_/+ > > > _- _ 0330)sin [Tr(ko- 1)/M] sin [Tr(ko+ 1)/M] edef" _o(Odteo____1)

(B25)
are chosen, with the aid of expressions (B28) and (B29), it
can be shown that

and

ko + l k ko-1 N

[Tr(ko+l)] I _ > >

_x>2sin 2 1 2M K M (B31)
(B26) go+ 1 e go- 1

[ ] -->>7r(eo+ 1) M L M
eY> 2 sin2 L 2)14

using inequalities (B25), (B26), and 0331), and the fact that
Let M >> Max lko,eol, it can be shown that inequality 0323)

along with the conditions K> k > 0 and L > g> 0 are

Ko_f"Mko ") satisfied if k and e are chosen according to equation 0330).
0327) QED

Lode=f"Mgo This appendix concludes with a discussion on expressions
0319) and 0320). With the aid of equations (27) to (29) and

For any K >_Ko and L >_Lo, there exist six unique integers (35) to (37), equation 0319) implies that r" = 7.0 and G* = G°
or, /3, 3', or', /3', and 3" such that when b = 0 even if the integers K and L are finite. On the

other hand, for b ;_ 0, inequality 0320) implies that (1)
K = etMko+/3M + 3" ") G" > G° always and (2) 7.0 _ 7"*unless 3"max+ 3"rain= )kmax

(B28) + _min" Since the current local relaxation procedure and
L = a'Mg o +/3'M + 3" convergence rate prediction method are developed from the

assumptions that G* = G° and 7.*= 7.0,one may expect that
and the current procedure works less well, and the predictions

given by the parameter Ot(n) become more conservative for
ot>_ 1 ko >/3 _>0 M > 3' ->0 ") a PDE with a cross-derivative term. The second part of the

(B29) above expectations was confirmed by the numerical results
e_' _>1 eo>/3' ->0 M > 3'' _>0 shown in the section Numerical Evaluation.
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Appendix C
Derivation of Equations (39) to (41)

With the aid of equations (30) to (32), equation (37) can where ao def.Co/ao > 0. It should be noted that, as a result
be rewritten as of equation (4), the denominator of the fraction in equation

_, aoto + c + _/(aao - c) z + 4b2oto (C1) is always positive. In view of,equations (36) and (C1),- _> 1 (C1) one may consider the parameter as a function of a, b, c,
aoto + c - _/(aao - c)2+ 4b2oto and c%,and obtains

OG" 8a(ac-bZ)(ao-C/a)

0c%- [ ]2 (C2)
(_* + l)2,X/(ae_o-C)2 +4bZoto , aOto+C-x/(aao-c)Z +4b2ot o

where (aao - c)z + 4b20_o# 0 is assumed. Equation (C2) (2) 3,(°'e_= 3,(k'°_=
coupled with equation (4) implies that (1) OG*/Oao < 0 if

oto < c/a, and (2) OG*/cgoto > 0 if ao > c/a. Equations (39) for k = 1,2..... (K- 1) and e = 1,2..... (L- 1). Consequently
and (40) are the direct results of properties (1) and (2). one concludes that

To prove equation (41), one notes that fi = d if Co/ao= c/a.
Thus equations (B13) to (B17) imply that ")'maxq- "Ymin= _kmax+ )krnin----2_ (C3)

(1) ,y_k,e_+ 7_!¢-k,e)= 3,_k,e)+ ,,/_k,r-e)= 2_ Equation (41) follows directly from equations (28), (35), and
(C3).

and
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Appendix D
Derivation of Equations (53) and (54)

To obtain the results given in equations (53) and (54), the aQ(a°----_)> 0 if a o > a m "_
parameters aooef"Co/ao > 0 and 13ijd_f"ciy/aij > 0 are dao
introduced. With the assumption that bij = 0 for all (i,j) _ q_,

equations (30) to (32), (37), and (49) can be used to show that (D4)

d'](a°) < 0 if a o < am(ao/{3ij)- 1 -

I if ao/_i j >_ 1 dao

Gij = J(ao/13ij) de=f" (a°/_iJ) + 1

1 - (ao/_ij) if 1 _>Oto/Bij > 0 where and=ef" N//_max • _min

(ao/_ij) + 1 Proof

(D1) As a result of equation (D2), J(ao) equals to the greater
of J(ao/_min ) and J(ao/[Jmax). Since (1) am/_min > 1, (2)
am/{3max< 1, and (3) J(am/l_min)=J(am/_max), one

Note that concludes that

it_l)2 2 1 I J(ao/_min) if ao-> a

>0 if t> 1 J(ao )= m_ (D5)

dJ(t______)= (D2) J(ao/3max ) if a o < am( )dt

_-_--_+ < 0 if 1 > t > 0 Inequality (D4) is a direct result of equations (D2) and (D5).
QED

Inequality (D4) implies that J(ao) increases monotonically if
That is, the functionJ(t) increases monotonically if t > 1 and ao > am and decreases monotonically if ao < am. Since
decreases monotonically if 1 > t > 0. J(ao) = G_°(eqs. (51), (D1), and (D3)), equations (53) and

Let 3max and _min be the parameters defined in (54) simply state the fact that J(ao)reaches its minimum
equation (55) and, for a given Oto, if(am) = J(am/l_min) = G_in if and only if ao = am.

In case that 3max= 3rain,equations (D1) and (D3) imply

J(oto)d--ef"Max IJ(oto/l_ij)l (D3) that the minimum of J(C_o)is zero and it is reached if and
(i,j)_d_ only if a o =/3 owhere/3o denotes the value of either _max or

_min. Equations (53) and (54) obviously are valid for this
Assuming _max> Bmi,, it can be shown that special case.

18



References

1. Hockney, R.W.: Fast Direct Solutionof Poisson's Equation using Fourier and, Part II--Application to Secondary Flows in a Turning Channel.
Analysis. J. Assoc. Comput. Mach., vol. 12, no. 1, Jan. 1965, pp. J. Comput. Phys., vol. 60, no. 1, Aug. 1985, pp. 23-61.
95-113. 10. Botta, E.F.F.; and Veldman, A.E.P.: On Local Relaxation Methods and

2. Hockney, R.W.: The Potential Calculation and Some Applications. Their Applicationto Convection-DiffusionEquations. J. Comput. Phys.,
Methods in Computational Physics, Vol. 9, Plasma Physics, B. Adler, vol. 48, no. 1, Oct. 1982, pp. 127-149.
S. Fernbach and M. Rotenberg, eds., Academic Press, 1970, pp. 11. Chang, S.C.: A Semi-Direct Procedure Using a LocalRelaxation Factor
135-211. and its Application to an Internal Flow Problem. Ninth International

3. Dorr, F.W. : The Direct Solution of the Discrete Poisson Equation on Conference on NumericalMethodsin FluidDynamics. Soubbaramayer;
a Rectangle. SIAM Rev., vol. 12, no. 2, Apr. 1970, pp. 248-263. and J.P. Boujot, eds., Springer-Verlag, 1984, pp. 143-147.

4. Buneman, O.: A Compact Non-iterative Poisson Solver. Institute for 12. Smith, Gordon D.: Numerical Solutionof Partial Differential Equations,
PlasmaResearch, Stanford University, Report SU-IPR-294, May 1969. Second ed., Clarendon Press, Oxford, 1978, p. 29.

5. Hockney, R.W.: Rapid Elliptic Solvers. Numerical Methods in Applied 13. Hageman, L.A.; and Young, D.M.: Applied Iterative Methods.Academic
Fluid Dynamics, B. Hunt, ed., Academic Press, 1980, pp. 1-48. Press, 1981, p. 12.

6. D'Yakanov, E.G.: An Iteration Method of Solving Simultaneous 14. Adams, J.; Swarztrauber, P.; and Sweet, R.: FISHPAK: A Package of
Equations of Finite Differences. Dokl. Akad. Nauk. SSSR, vol. 138, FORTRAN Subprograms for the Solution of Separable Elliptic Partial
1961, pp. 522-525. Differential Equations, Version 3. National Center for Atmospheric

7. Concus, P.; and Golub, G.H.: Use of Fast Direct Methods for Efficient Research, Boulder, CO, 1979.
Numerical-Solution of Non-Separable Elliptic Equations. SIAM J. 15. Chang, S.C.: Solution of Elliptic Partial Differential Equations by Fast
Numer. Anal., vol. 10, no. 6, Dec. 1973, pp. 1103-I 119. Poisson SolversUsing A LocalRelaxation Factor H--Two-step Method.

8. Bank, R.E.: Marching Algorithmsfor EllipticBoundary-ValueProblems. NASA TP-2530, 1986.
II --The Variable Coefficient Case. SIAM J. Numer. Anal., vol. 14, 16. Chang, S.C.: Generalizations of Two Inequalities Involving Hermitian
no. 5, Oct. 1977, pp. 950-970. Forms. Linear Algebra Appl., vol. 65, Feb. 1985, pp. 179-187.

9. Chang, S.C.; and Adamczyk, J.J.: A New Approach for Solving the
Three-Dimensional Steady Euler Equations: Part I-General Theory,

19







1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TP-2529

4. Title and Subtitle 5. Report Date

Solutionof EllipticPartialDifferentialEquations May 1986
by Fast PolssonSolvers Using a Local Relaxation
Factor B.Performing Organization Code

I - 0ne-Step Method 505-31-04
7. Author(s) 8. Performing Organization Report No.

Sln-,ChungChang E-2461-I

10. Work Unit No.

9. Performing Organization Name and Address
11. Contract or Grant No.

NationalAeronauticsand Space Administration
Lewis ResearchCenter

Cleveland, Ohio 44135 13.TypeofReportandPeriodCovered

12. Sponsoring Agency Name and Address TechnI ca l Paper

Nati onal Aeronautics and Space Admlni strati on !14.SponsoringAgency Code
Washington, D.C. 20546

15. Supplementa_ Notes

Presented in part at Ninth International Conference on Numerical Methods in
Fluid Dynamics, Saclay, France, June 25-29, 1984.

16. Abstract

An algorithm for solvtng a large class of two-and three-dlmenslonal
nonseparable elliptic partial differential equations (PDE's) is developed and
tested. It uses a modified D'Yakanov-Gunn lteratlve procedure in which the
relaxation factor ts grld-polnt dependent. It Is easy to implement and
appllcable to a variety of boundary conditions. It ls also computatlonally
efficient, as indicated by the results of numerical comparisons with other
established methods. Furthermore the current algorithm has the advantage of
possessing two important properties which the tradltlonal lteratlve methods
lack; that is, (1) the convergence rate Is relatively insensitive to grld-cell
stze and aspect ratio, and (2) the convergence rate can be easily estimated by
using the coefficient of the PDEbeing solved.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Ellipticproblemsolver Unclassified- unlimited
One-step local relaxationmethod STAR Category64

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price*

Unclassified Unclassified 21 A02

*For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1986





NationalAeronauticsand
SpaceAdministration BULKRATE
Code NIT-4 POSTAGE& FEESPAID

NASA
Washington, D.C. Permit No. G-27
20546-0001

Offic=al Business
Penally lot Privale Use. $300

" POSTMASTER: If Undeliverable (Section I S8Postal Manual) Do Not Return


